
Matlab
An Introductory Workshop

Jamie Pierson

UMCES HPL

21 January 2011

Part II:

Graphics

GRAPHING BASICS

Plotting in Matlab

>> x=0:0.1:2*pi;

>> y=sin(x);

>> plot(x,y);

Some Line Properties

Specifier Linestyle

‘-’ Solid

‘—’ Dashed

‘:’ Dotted

‘-.’ Dash-Dot

‘none’ None

‘linestyle’

‘Marker’

Specifier Marker Type

'+' Plus sign

'o' Circle

'*' Asterisk

'.' Point

'x' Cross

'square' or 's' Square

'diamond' or 'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'pentagram' or 'p' Five-pointed star

(pentagram)

'hexagram' or

'h'''

Six-pointed star (hexagram)

'none' No marker (default)

‘Color’

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

X,Y Scatter Plots

For simple X,Y scatter plots you can string

together line, color, and marker information

within the “plot” function

Example

>> x=0:0.1:2*pi;

>> y1=sin(x);

>> y2=cos(x);

>> y3=y1+y2;

>> plot(x,y1,'r-p’)

>> plot(x,y2,'b:+’)

>> plot(x,y3,'k-.o')

>>

Bar plots

• bar represents a 1D function using 2D objects-

-rectangles

• the rectangles are represented in Matlab as a

patch object

– Patches are polygons

– Patches can have complicated colors

– Patches (or related surface objects) are used by all

higher-order functions

Adapted from A. Pershing 2010

Key properties of patch objects

• edgecolor--color of the edges

• facecolor--color inside the the patch

• Both of these can be set to a specific color (or

none)

• Or, we can prescribe another dimension of data

at each vertex and let it control the color

Adapted from A. Pershing 2010

Drawing patches

• Lots of functions produce patches

• patch is the lowest level function

(followed closely by fill)

– patch(x,y,c)--x and y specify vertex

coordinates, c controls the color

– patch(X,Y,C)--Each column of X, Y, and C is

a separate patch

0 1

1

0
x=[0 1 0]
y=[0 0 1]
c=„r‟

Adapted from A. Pershing 2010

• patch(X,Y,C)--Each column of X, Y, and C is a different

polygon,

– but same object!

– X and Y must be the same size

• Each polygon must have same number of vertices (rows)

Drawing patches

1

0

-1

X=[0 1 0;
 0 1 0]‟
Y=[0 0 1;
 0 0 -1]‟
C=„r‟ 0 1

Key properties of patch objects

• edgecolor--color of the edges

• facecolor--color inside the the patch

• Both of these can be set to a specific color (or

none)

• Or, we can prescribe another dimension of data

at each vertex and let it control the color

Adapted from A. Pershing 2010

Visualizing Grids

• Matlab‟s surface-based functions want grids:

– pcolor

– contour & contourf

– surf

– mesh

Adapted from A. Pershing 2010

Colorizing z

• A standard way of representing 2D data is to

make color indicate z

zmin z zmax

Adapted from A. Pershing 2010

• pcolor(x,y,Z) will colorize Z on grid defined by x and y

– Z=m-by-n, x=1-by-n, y=m-by-1

• pcolor(X,Y,Z) will colorize Z on an irregular grid

– X,Y, and Z all m-by-n

• h=pcolor(…) gets the handle.

– The object is actually a surface object

– surface objects are nearly identical to patches, but must be constructed

from quadrilaterals (a grid)

pcolor

Adapted from A. Pershing 2010

How it works

• h=pcolor(eye(3));

1 2 3

3

2

1
1

0

0

0

0

1

0

1

0

shading(„faceted‟)
color of cell is set by lower
left-hand corner

shading(„flat‟)
edgecolor=„none‟

shading(„interp‟)
interpolates between
vertices to get color

Adapted from A. Pershing 2010

Controlling pcolor

• shading(str) sets „facecolor‟ property to str

– flat, faceted or interp

• colorbar shows a colorbar

• caxis([zmin, zmax]) controls the color limits

– same as set(gca,‟clim‟,[zmin, zmax])

• colormap(cmap)--changes the colors. help graph3d lists the

built in colormaps

Adapted from A. Pershing 2010

Built-in Colormaps

Adapted from A. Pershing 2010

HANDLE GRAPHICS

Handle Graphics

• Handles are just floating point numbers, but

– they are a unique identifier

– they function as pointers to Matlab graphics objects

• We can use them to get info about objects and to
change the objects‟ properties

– everything you see in a figure is a graphic object or part of
one

– every object has a handle

– every object has a set of properties that can be changed
using the handle

Adapted from A. Pershing 2010

Handle Graphics

• Get properties with “get”
– get(h)--lists all of the properties of h and their values

– get(h,property)--returns the value of the property

• types vary with property (some are text, some are arrays)

• Change properties with “set”
– set(h)--lists all of the properties and their default values

– set(h,property,value, property, value,…)--changes the values of the
properties

• set is “vectorized” so you can change properties of lots of
objects simultaneously

Adapted from A. Pershing 2010

Handle Graphics

get(gca)

get current axis

Lists all properties of the currently selected axis

get(gcf)

get current figure

Lists all properties of the currently selected

figure

Figures and Axes

• Figures and axes are also objects

• We can get handles to them and change their

properties

• These objects are created as needed when

graphics routines are called

– They can also be created explicitly

Adapted from A. Pershing 2010

Figures

• If no figures are open, Matlab will create one when you call a

graphics routine

• If a figure is open, then any subsequent graphics will be placed

in that figure

• Figures can be created explicitly by calling figure

– h=figure; --creates a new figure, handle saved in h

• Figures can be cleared with clf

Adapted from A. Pershing 2010

Multiple Figures

• If multiple figures are open and you call plot,

where does the new line go?

– One of the figures is the “current figure”

• the current figure is the last one you plotted into or the

last one created

• the function gcf returns a handle to the current figure

Adapted from A. Pershing 2010

• More ways to use figure

– figure(n)

• if figure number n doesn‟t exist, then it is created

• if it exists, then it becomes the current figure

• regardless, it will be the current figure

– figure(h)--changes current figure to h (a figure handle)

• Delete figures with close

– close(h)--closes figure with handle h

– close(n)--closes figure number n

– close all closes all figures

Multiple Figures

Adapted from A. Pershing 2010

Handle Properties--ALL objects

• The last 18 properties from get(h) are
properties that all objects have

• Most important:

– Parent--handle to parent object

– Children--handles to child objects

– Type--tells what it is (e.g. line)

– Visible--(on/off) can hide objects

• A few other general properties are used for
GUI‟s

Adapted from A. Pershing 2010

Handle Tree

• Matlab organizes graphics like a tree

• The parent and children fields allow you to

traverse the tree
FIGURE

GUI AXES

TEXT LINE

get(gca,‟parent‟)

gca

get(gca,‟children‟)

Adapted from A. Pershing 2010

MULTIPLE AXES

Multiple Axes

• In many ways, axes and figures are managed

the same way, but…

– axes are not numbered in any intelligible way, so

axes(1) is meaningless

– If you have multiple axes, you must save their

handles and switch axes using axes(h)

– Matlab‟s subplot command returns some of this

functionality (example in a minute)

Adapted from A. Pershing 2010

Axes Properties

• Box--on/off --switches box around axes on and
off

• Camera stuff--controls how the objects in axes
are viewed

• Clim--limits for color mapping

• Color--color of the axes (usually white)

• Font stuff--controls fonts on labels

• Line stuff--properties of the axes lines (options
for grid lines)

Adapted from A. Pershing 2010

• Position--controls where the axes goes in figure

• Tick stuff--controls properties of tick marks

• Title--handle of text object with axes title

– title(„axes title‟) will title the axes

• Units--several options, default is normalized

• Etc.

Axes Properties

Adapted from A. Pershing 2010

Axes Properties

• Axes have 3 axes: X (horizontal), Y (vertical), Z (height)

• We can control the range and appearance of each

– XColor--color of the axis lines

– XGrid--on/off turns grid lines on or off

– XLabel--handle of text object with x axis label

• xlabel(„x label‟) will label the x axis

– XLim--range of the x axis

• cas set xlim and ylim togther with axis command

– XScale--linear/log --can plot on a log10 scale

Adapted from A. Pershing 2010

– Xtick--where the tick marks (and labels) occur

– XTickLabel--the labels

• Matlab works hard to pick “good” labels (base 10)

• Can change labels by setting ticklabel

– set(gca, „xticklabel‟, „first|second|third‟)

– Setting Xtick or XTickLabel will change

XTickMode or XLabelModes to „manual‟--may

give problems if figure is resized

Axes Properties

Adapted from A. Pershing 2010

subplot

• You can produce multiple axes laid out in a

regular fashion using subplot

– subplot(m,n,j) produces the jth axes from an m-by-n

grid of axes

– if subplot(m,n,j) exists, then calling it will set gca to

this axes

– h=subplot(m,n,j) returns the handle to the jth subplot

1 2

3 4

5 6

subplot(3,2,4)

Adapted from A. Pershing 2010

PRINTING AND SAVING

FIGURES

Printing

• Print through GUI or command line

– print -depsc fname.eps will save gcf to an EPS file

– print -djpeg fname.jpg will save gcf to a JPEG

– Can also save figure to a .fig file from the GUI

• Opening the file (from GUI) will recreate the figure

See help for “print” to find more properties

Adapted from A. Pershing 2010

Printing

Graphics Format Bitmap or Vector Driver

BMP Bitmap Ghostscript

EMF Vector MATLAB

EPS Vector MATLAB

HDF Bitmap MATLAB

ILL Vector MATLAB

JPEG Bitmap MATLAB

PBM Bitmap Ghostscript

PCX Bitmap Ghostscript

PDF Vector Ghostscript

PGM Bitmap Ghostscript

PNG Bitmap MATLAB

PPM Bitmap Ghostscript

SVG Vector MATLAB

TIFF Bitmap MATLAB

Printing

If you are familiar with Adobe Illustrator or

another “vector graphics” program I suggest

using “pdf” output with “painters” rendering

>> print –dpdf –painters [filename]

Printing and Saving

• Lots of matlab functions (print, save, load), allow you to type
your input outside parentheses

– Ex: print -djpeg foo.jpg

• However, Matlab is hiding the real function call (and function)
from you.

• Inputs typed after a command, without parentheses are passed
as strings to the function

– print(„-djpeg‟, „foo.jpg‟);

– Useful in your own functions

You must use this method () if you are specifying a path or filename with
spaces in it

Adapted from A. Pershing 2010

ANIMATIONS AND MOVIES

Animations

• Animations are extremely easy:

1. Make an image

2. Change it

3. Repeat

Adapted from A. Pershing 2010

• You can do this with a for-loop

– for j=1:n

• Make image n

– end

• Problem: Matlab does this too fast

– Solution: insert pause command

• pause; %waits until user hits a key

• pause(t); %pauses for t seconds

Animations in Matlab

Adapted from A. Pershing 2010

• Problems with previous scheme

– Not portable (only in Matlab)

– Not efficient: must render each image every time

• Solution: save to a standard movie format

– AVI is a simple video format which is easy to

create with Matlab

Creating AVI files

Adapted from A. Pershing 2010

• Procedure is similar to before:
– First, open a file:

• mov = avifile(name); %opens file called name

– Set any options
• mov.Quality=100;%quality of images

• mov.Compression='None'; %compression

• mov.Fps=fps;%frames per second

– Create an image as before

– Then, capture it:
• F = getframe(gcf);%capture the frame

• mov = addframe(mov,F);%add it to the movie

– Repeat

– Close the movie
• mov=close(mov);

Creating AVI files

Adapted from A. Pershing 2010

